Differential Geometry-II Final Test (BMath-2023)

Instructions: Total time 3 Hours. Solve problems (even partially), for a maximum score of 50 . Use terminologies, notations and results as covered in the course, no need to prove such results. If you wish to use a problem given in an assignment or homework, please supply its full solution.

1. Let M be a smooth connected manifold and D a connection on M. For $P \in M$, let G_{P} denote the holonomy group of D at P. Prove that for any point $Q \in M, G_{Q}$ is isomorphic to G_{P}.
2. Let M be a compact smooth manifold of dimension n and $f: M \rightarrow \mathbb{R}^{n}$ a smooth map. Prove that there exists $p \in M$ such that the derivative $D f(p)$ is not injective.
3. Compute the Lie algebra of $\mathrm{SO}(n, \mathbb{R})$ and hence find $\operatorname{Dim}(\mathrm{SO}(n, \mathbb{R}))$. $(8+2)$
4. Let M, N be smooth manfolds and $f: M \rightarrow N$ be a smooth map. Let $g \in C^{\infty}(N)$. Prove that $\mathrm{d}(g \circ f)=f^{*}(\mathrm{~d} g)$, where $f^{*}(\omega)$ denotes the pullback of a differential form ω on N, by f.
5. Let \mathbb{H} be the algebra of real quaternions. Identify S^{3} with the group of quaternions having norm 1 . Identify S^{1} as a subgroup of S^{3}, as the group of norm-1 complex numbers in the usual way. Let $q \in S^{3}$ and $\phi_{q}: S^{1} \rightarrow S^{3}$ be the multiplication by q, i.e., $\phi_{q}(z)=q z$. Prove that ϕ_{q} is an immersion. (10)
6. Prove that any Lie group G is orientable, i.e. there exists a nowhere vanishing top degree differential form on G.
7. Let $\gamma: \mathbb{R} \rightarrow S^{2}$ be the equator $\gamma(t)=(\cos t, \sin t, 0)$, where $S^{2} \subset \mathbb{R}^{3}$ is the 2 -sphere with centre as the origin, with Riemannian metric as the induced Riemannian metric from \mathbb{R}^{3}. Let $X(t)=e_{3}:=(0,0,1)$ for all $t \in \mathbb{R}$. Is X parallel along γ ? Justify your answer.
8. Let M be a Riemannian manifold and let $d: M \times M \rightarrow \mathbb{R}$ denote the induced distance function (metric!) on M. Give an example to show that for $P, Q \in M$, there may not be any curve joining P to Q with length equal to $d(P, Q)$.
